The DANCER Project (Digital Agent Networking for Customer Energy Reduction), funded by the EPSRC’s Energy Efficiency in Buildings programme started work on 1st August 2012. The project, which is a collaboration between the Universities of Essex and London South Bank aims to develop and trial a new approach to domestic energy management.



Long-term energy consumption reduction can be achieved more readily through sensible cooperation between end users and technological advancements. Monitoring energy use within buildings requires clear and reliable methods with outputs that are meaningful and helpful. End users play a pivotal role in this as energy use revolves around their presence and comfort. Hence, with changing lifestyles and working patterns, energy consumption reduction can be aided by new approaches in digital innovation. Energy metering schemes are now popular and provide data on energy use and cost, but communicatively are a one-way street. Hence, this information is only beneficial if users continually make changes to utility use within their home. However, behavioural changes inducing energy reduction fade relatively quickly and users feel less empowered. Last year, residential sector emissions rose by 13.4% despite metering being a popular investment. Based on this information, interactive systems can help address this problem.

Consumers appreciate that innovative technology can increase their quality of life. However, a lasting bond between the two can only occur when users have confidence in the technology around them. This is more likely to happen when users and technologists work collectively in the system design process. DANCER Project takes insights from users' behaviour analysis, metering schemes, wireless sensors and embedded software to produce a system that both interactively and automatically manages users' energy consumption within indoor environments. It will tailor users' energy consumption to their habits aiming to reduce energy consumption. To achieve this DANCER Project adopts a multidisciplinary approach where knowledge from psychology, social and economic research, wireless communication and computer science unite to provide a viable solution that is beneficial to all the stakeholders on the energy supply-consumer chain.